Name: _____

Math 315, Section 2 Final Exam Instructor: David G. Wright 17 April 2009, 11 AM – 2 PM

- 1. (20%) Give an example of each of the following or argue that such a request is impossible:
 - (a) a nested sequence of open intervals whose intersection is empty;
 - (b) a bounded monotone sequence that has a divergent subsequence;
 - (c) a sequence of integrable functions f_n defined on a closed interval [a, b] that converges pointwise to a bounded function f that is not integrable;
 - (d) a sequence of integrable functions f_n defined on a closed interval [a, b] that converges pointwise to an integrable function f on [a, b] so that $\lim_{n \to \infty} \int_a^b f_n \neq \int_a^b f_i$;
 - (e) an infinitely differentiable function g so that g(x) is equal to its Taylor series only if x = 0.
- 2. (10%) Show that if 0 < r < 1, then $\lim_{n \to \infty} r^n = 0$.

- 3. (10%) Complete the following definitions:
 - (a) A set C in \mathbb{R} is *compact* if
 - (b) Let $f: A \to \mathbb{R}$ be a function. Then f is uniformly continuous means
- 4. (10%) Prove that a continuous function on a compact set has a maximum; i.e., if $f: K \to \mathbb{R}$ is a continuous function and K is compact, then there is a $c \in K$ so that $f(x) \leq f(c)$ for all $x \in K$.

5. (10%) Let f and g be functions defined on an interval A that are differentiable at some point $c \in A$. Show that (fg)'(c) = f'(c)g(c) + f(c)g'(c).

6. (10%) State and prove the Mean Value Theorem.

7. (10%) Let (f_n) be a sequence of functions defined on $A \subseteq \mathbb{R}$ that converges uniformly on A to a function f. If each f_n is continuous at $c \in A$, show f is continuous at c. 8. (10%) Show that if a power series $\sum_{n=0}^{\infty} a_n x^n$ converges at some point $x_0 \in \mathbb{R}$, then it converges absolutely for any x satisfying $|x| < |x_0|$.

9. (10%) State and prove either version (not both) of the Fundamental Theorem of Calculus.